# Stirling's formula

(definition)

**Definition:**
For large values of n, (n/e)^{n} √(2nπ) < *n!* < (n/e)^{n}(1 + 1/(12n-1)) √(2nπ).

**See also**
*Stirling's approximation*, *factorial*, *gamma function*.

*Note:
After CRC Standard Mathematical Tables, Fourteenth Edition, Samuel M. Selby, ed., page 433, 1965.*

Author: PEB

## More information

Peter Luschny lists and evaluates many approximation formulas for n!. See Eric W. Weisstein, Stirling's Approximation for a derivation and other approximations.

Go to the
Dictionary of Algorithms and Data
Structures home page.

If you have suggestions, corrections, or comments, please get in touch
with Paul Black.

Entry modified 10 November 2008.

HTML page formatted Wed Mar 13 12:42:46 2019.

Cite this as:

Paul E. Black, "Stirling's formula", in
*Dictionary of Algorithms and Data Structures* [online], Paul E. Black, ed. 10 November 2008. (accessed TODAY)
Available from: https://www.nist.gov/dads/HTML/stirlingsFormula.html