NIST

Euclidean distance

(definition)

Definition: The straight line distance between two points. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is √((x1 - x2)² + (y1 - y2)²).

See also rectilinear, Manhattan distance, Lm distance.

Note: In N dimensions, the Euclidean distance between two points p and q is √(∑i=1N (pi-qi)²) where pi (or qi) is the coordinate of p (or q) in dimension i.

Author: PEB


Go to the Dictionary of Algorithms and Data Structures home page.

If you have suggestions, corrections, or comments, please get in touch with Paul Black.

Entry modified 17 December 2004.
HTML page formatted Mon Nov 18 10:44:09 2013.

Cite this as:
Paul E. Black, "Euclidean distance", in Dictionary of Algorithms and Data Structures [online], Vreda Pieterse and Paul E. Black, eds. 17 December 2004. (accessed TODAY) Available from: http://www.nist.gov/dads/HTML/euclidndstnc.html